
N96- 12935

CLIPS meets the Connection Machine
or

How to create a Parallel Production System

Steve Geycr
MtU, Inc.

10455 White Granite Drive

Oakton, Virginia 22124

Abstract

Production systems usually present unacceptable run-
times when faced with applications requiring tens of
thousands to millions of facts. Many efforts have fo-

cused on the use of parallelism as a way to increase
overallsystem performance. While these effortshave
increase,d pattern matching and rule evaluation rates,
they have only indirectly dealt with the problems
faced by fact burdened applications. We have imple-
mented PPS, a version of CLIPS running on the
Connection Machine, to directly address the problems
faced by these applications. This paper will describe
our system, discuss its implementation, and present
results.

1 Introduction

As production systems have been used to implement a
wider and wider range of applications, the limits of cur-
rent technology have been stretched. One particularly
sensitive limit has been the problem size and how this
size impacts the total runtime of a system. Most sys-
tems degrade rapidly once their size limits are reached.
Indeed, the acceptable runtime is often an imlxrtant, if
not the most important, factor in setting an upper limit
on problem size. Many applications have had to wait for
technology to mature enough to support the application's
minimum acceptable problem size.

Several factors influence the size of a problem. Two
common factors are the number of facts manipulated by
the application and the number of rule evaluations re-
quired to come to a solution. Studies demonstrate that
many production system spend 90% of their total time
matching facts to rule patterns. In an attempt to create
more efficient systems on serial computers, algorithms
have been developed to optimize this task. Rete is the
most commonly used algorithm [1]. This algorithm can
efficiendy manage large numbers of simultaneous pattern
queries, and as queries are compleled, Rete updates the list
of rules ready for execution. Rete caches internal data
structures to remember partially matched queries and the
number of cached entries increases rapidly as facts enter

working memory. The memory required by these data
structures and the computation necessary to manage them

setsa practicallimiton how many factscan be placedin

working memory.

Many production systems built on parallel hardware have
also focused on efficiently matching facts to patterns.

Parallel pattern matching does support large rule sets and
increases the rate at which facts can be processed.

However, if the application is fact driven, the resources
consumed in parallel pattern matching can overwhelm the
increased resources brought by the parallel architecture.
This is especially true if the parallel pattern matching al-
gorithm caches partially matched queries. Special proce-
dures are necessary when designing production systems
that will process applications with large numbers of facts.

We are interested in problems requiring tens of thousands
to millions of facts. Some examples are simulation and

modeling, package/vehicle scheduling, intelligent
databases, and low-to-mid level processes for image un-

derstanding. In each of these applications areas, many
real world problems demand more facts than can be pro-
cessed by current production systems. To get these sys-
tems away from the laboratory and running real world
problems willrequirenew techniques. We have developed
PPS to explore one possible technique.

This paper is organized as follows: Section 2 presents
necessary background material and describes the algorith-
mic approach taken by PPS. The changes made to
CLIPS to create PPS are discussed in Section 3. This
section can be skipped by those uninterested in imple-
mentation details. Experimental results are presented in
Section 4 followed by a discussion of potential enhance-
ments in Section 5. The paper finishes with a summary
and conclusions in Section 6.

2 How PPS works
This section describes PPS. It begins with a description
of the Connection Machine and explores the features that
makes the CM well suited to this problem domain. Next
it discusses the choice of CLIPS as a software base and

describes the syntax changes necessary to allow CLIPS

programs to run on PPS. Finally, the section will dis-
cuss the internal changes necessary to CLIPS to allow
parallel execution on the Connection Machine.

594



2.1 The ConnectionMachine

The Connection Machine, or CM, is a parallel computer
architecture that supports between 4 and 64 thousand sep-
arate processors. Figure 1 is a pictorial diagram of a CM.
Each individual processor has a local memory, an ALU
(Arithmetic Logic Unit), and a general inter-processor
communication system. All processors share the same
instruction stream supplied to them from a front end

computer. Individual processors can perform separate op-
erations by executing or ignoring, selectively, the se-

quences of instructions supplied by the front end. More
complete technical information can be found in reference
[2]. The CM has several properties that separate it from
the other parallel architectures commercially available.

i Sun 4 _._Front End

Connection Machine Processors

D r--lD El

D

Figure 1. The Connection Machine

By supporting thousands of processors, the CM encour-
ages the programmer to focus on how the data is manipu-
lated and how it interacts with other data. This is in con-

trast to more conventional multiprocessors where the fo-
cus tends to be on the parallel algorithm's flow of con-
trol. The CM system software supplies even more flexi-
bility by creating "virtuaP' processors. The programmer
can choose the number of processors necessary to solve a

problem and the CM will automatically divide the physi-
cal processors into virtual ones. The CM does constrain
the number of virtual processors to be a power of two.
With the vast number of processors available, it is natural
to place each data slruclxtre manipulated by a program into
a separate vimml processor. Each data structure can then
be viewed as having its own processor to perform any
comlmtation required.

The CM has a general purpose, hypercube based, com-
munication system that allows each processor to effi-

ciently communicate with any other. Virtual processors
generalize this system to allow communication between
themselves. Some specialized operators have been created

on top of the communication system to perform certain
functions very rapidly. Important to PPS are the opera-
tions that allow the CM to rapidly replicate data from
thousands of virtual processors to thousands of others and
a mechanism that allows all active processors to enumer-
ate themselves.

The most idiosyncratic property of the CM is how in-
structions are supplied to the processors. The CM is a
Single Instruction Multiple Data or SIMT) machine.
While each processor in the CM has its own memory for
data storage, it must share its instructions with all others.
Each processor has a context flag to control its individual
execution of the instructions supplied to all processors.

For example, if an if then else is reached, all processors
calculate the if expression together. Those processors
failing the if test will have their context flag cleared and
the remaining processors will execute the then clause.
The context flag is reversed and those falling the if test
execute the else clause. The context flag is then restored

to its original value and execution proceeMs. Some effi-
ciency is lost as one or more sets of processors are dis-
abled. The advantage of this approach is that the individ-
ual processors and local memory can be made simpler
and smaller and hence the CM is able to have thousands

of physical processors. For PPS, the SIMD nature of the
CM is not limiting and having thousands of physical pro-

cessors is very important.

The front end processor is responsible for supplying in-
structions to the CM processors and performing serial

computations not well suited to the CM. The front end
also supplies the development environment, editors, and
the f'de system. The work done on PPS was performed
on a Sun-4 front end.

2.2 Software Considerations

Many reasons support the decision to base PPS on top of
CLIPS. Compared to any system we may have built
from scratch. CLIPS is a mattu_ system. It was already

supporting a user community and was actively being used
to write production systems. By startingwith CLIPS,
we would only need to write and debug those sectionsof
code necessary for parallel evaluation. From a users point
of view, PPS only requires small additions to source syn-
tax which allow serial versions of CLIPS, with their de-

bugging tools, to be used to debug productions destined
for parallel evaluation. Finally, C source code was sup-
plied with CLIPS without the need for complex negotia-
tions with a vendor.

To avoid losing the advantages gained by basing PPS on
CLIPS, it was important to keep the programmers view
of PPS very close to CLIPS. Extensions and restrictions
from standard CLIPS syntax should be limited in nature
and necessary to support parallel evaluation. The major

595



innovation of PPS is to break facts into serial and parallel
groups. The fast word of a fact is used to determine the
fact's class (in a manner similar to deftemplate). The
programmer can choose to place certain classes of facts
into parallel working memory and they will automatically
be processed by the CM. Serial facts are processed by the
normal CLIPS mechanisms. The programmer chooses
where PPS places facts based on the number of facts in a
classand the typeofoperationsperformedon thesefacts.

The fast field in a parallel fact is constrained to start with
a word which specifies the fact's class. Only classes des-
ignated by the programmer will be placed on the CM.
Parallel facts must also be of a fixed length and each field
of the fact must have its clam type specified. Maltifield
variables are excluded in rule patterns. These reslrictions
are to lessen the CM memory requirements and to avoid
dynamic allocation. Future versions of PPS could lift
these restrictions.

The form _.O'acOqeids creates a fact class and allows a de-
tailed description of the fact's contents. Its syntax is:

(deffaclfieldsc/a.uawne

parallelIserial

(fieldnametype)...)

The fast argument, classaame, defines this word as a fact
class. The next argument is either parallel or serial and it
specifies how to process this class. The rest of deffact-
fields is a list of field names followed by their data type.
The standard CLIPS data types have been extended to in-
clude integer and boolean. Facts whose fast word has
never been described with a deffactfields are assumed to be
serial facts.

Once a class of facts has been described as a parallel class,
the system will automatically place all facts belonging to
that class into the parallel working memory. All work
required of the parallel working memory is performed on
the CM.

2.3 Parallel execution in PPS

AS stated earlier, PPS splits the working memory into a
serial and a parallel part. When a rule enters PPS, Rete
(the standard CLIPS algorithm) is used to compile and
process _e serial pane, ms. Parallel patterns are convened
to queries of parallel working memory and these queries
are attached to the rule body. During execution, Rete
manages the serial patterns and when they have matched,
the rule is placed in a queue, ready for execution. Upon a
rule's execution, a parallel query is performed to collect
matching parallel facts, and the rule'sbody is evaluated in

parallel over these facts. In PPS, a single parallel rule
evaluation processes all facts that currently match its pat-
tern. The large number of processors available on the
CM makes the cost of processing a rule almost indepen-
dent of the number of facts that it matches. Efficiently

processing facts in parallel is very important as the num-
ber of facts increases to millions.

There is no certain knowledge that any fact or combina-
tions of facts will actually match the rule pattern. Since
it is not known when there is work for a parallel rule to

perform, they have to be periodically executed.
Currently, PPS uses a simple round robin approach to
schedule parallel rules. After each execution, a parallel
rule willplace itself at the end of the agenda for future ex-
ecution. This gives other rules an opportunity to execute
before reevaluating the current one. Execution terminates
when all serial rules have been removed from the activa-

tion agenda and no parallel rules are able to fred facts or
combination of facts not already evaluated. It is assumed

that parallel rules, on average, will find many facts to
evaluate and this will mask the inefficiencies caused by
extra rule evaluations. Section 5 discusses other, more

efficient, control swategies.

Since the scheduling scheme used by PPS allows rules to
be executed many times, some mechanism is necessary to
eliminate the reevaluation of a rule over facts already pro-
cessed. A global time, based on the number of rule eval-
uations, is maintained by PPS. Each fact in parallel
working memory is timestamped by the rule creating or
modifying it. 'When rule evaluation begins, the times-
lamp of its previous evaluation is compared to each fact's
timestamp. This comparison identifies facts that have en-
tered working memory since the rule's previous evalua-
tion. Only facts, or combination of facts, more recent
than the rule's previous evaluation are processed in the
current evaluation. This mechanism eliminates the ree-

valuation of facts by rules.

For PPS to execute efficiently, the CM must be able to
query the working memory in parallel, get all matching
combinations in parallel, and evaluate the resulting
matches in parallel. The CM places each parallel fact
into it own virtual processor and is quickly able to query
these facts, filter out the uninteresting ones, and create
matches. The matches end up in separate processors and
all matches are simultaneously available for execution of
the rule body. Since the matching and evaluating of rules
happen together for allfacts, the SIMD nature of the CM
has no negative impact on how PPS performs. Instead, it
has simplified the writing and debugging of PPS.

What advantage can PPS gain by replacing the Rete algo-
rithm with a potentially expensive database query? When
processing a miUion facts, Rete would have to create mil-
lions of intermediate data structures to hold pending
queries. These suuctures would consume megabytes of
stmage and the management of this storage would place a
large computational burden on the system. In its place,
PPS requires only a small (32 bit) fixed memory cost per
fact. The cost of querying can be justified as long at the

average number ofmatchesand subsequent rule evaluation
is faster than performing a similar match and evaluation

596



inanothermanner (such as Rete). With millions of facts

being queried, it is possible that, on average, hundreds or
thousands of facts will match each rule execution. Under
these conditions, PPS can perform better than alternative
methods.

This section has outlined the approach taken by PPS.

PPS is more memory efficient than Rete and, under the
proper circumstances, PPS will also be more time effi-
cient. The next section will outline that changes neces-

sary to create PPS from CLIPS.

3 Implementation
In order to create PPS, it was necessary to modify the

normal CLIPS processing in several places. This section
will begin with a short description of how CLIPS com-
piles and evaluates rules. This is followed by a descrip-
tion of how the rule compiler was modified. Finally. the
changes to rule evaluations are outliq.ed.

3.1 Normal CLIPS processing
CLIPS uses defrule to create a rule. When CLIPS re-
ceives a defrule, it creates two descriptions of the rule be-

ing processed. Figure 2 is an example rule with the two
descriptions created by CLIPS. The lower left diagram in
Figure 2 shows the internal structure of the rule's pattern,
the lower right is the internal description of the rule body.

After CLIPS creates the pattern description of the rule, it
checks the pattern for internal consistency. The Rete tree
builder is then called to create appropriate modifications

(defrule n_e-pair

(val ?x&:(> ?x 10))

(val ?y&-?x)

(assert (pair?x ?y)))

PATTERN.--SINGLE-- .?x

I I
#val COAMP

?x 10

PATrERN-- SINGLE--?y

I I
Oval -?x

Figure 2. Sample rule and its internal representation

to the discrimination and join network. Finally, the rule

body is processed and it is attached to the Rete join net-
work. A more complete description of this process can
be found in reference [3].

CLIPS has a built in expression evaluator used to evalu-

ate expression trees. Each box in Figure 2 contains a
function that CLIPS will evaluate with the expression
evaluator. The lines under each box, connected to other

objects, are the arguments required by this function. Each
function determines the values of its arguments and then

performs its operation. Expressions and the expression
evaluator are use both to evaluate the rule body and evalu-
ate conditions inside the Rete algorithm.

PPS interrupts the normal compilation process in two
places, the processing of patterns and the processing of
the rule body. It also extends the expression evaluator.

3.2 PPS Pattern Compilation
PPS steps in after CLIPS has created the patterndescrip-
tion. It separates the pattern clauses that match serial facts
from those that match parallel facts and reorders the
clauses to have the serial ones firsL If no serial clause is
found, one will be created to match the fact initial-fact.
After the standard internal consistency checks are made on
the reordered pattern, the serial clauses are passed to the
Rete tree builder for normal processing. The parallel

clauses are passed to a pattern compiler which converts
rule patterns into equivalent database queries. These
queries will be attached to the rule body in a later stage in
the processing. From this point the CLIPS processing
precedes in a normal manner.

Since PPS uses queries to match the rule patterns, each

legal CLIPS pattern must be converted into a database
query. These database queries are made up of restricts and
joins. Restricts are used to select a subset of the original
database based on some conditional test. Joins create new

datahases containing the possible permutations of the in-
put databases. For example, if two databases had ele-
ments (A B) and (I 2 3). the joined database would have
the elements (A1 A2 A3 BI B2 B3).

The pattern compiler examines the rule pattern and creates
a database query. Restrict is generated when a pattern
limits the value of some field. A join is generated to
combine each new pattern clause to the ones already pro-
cessed. The number of joins will be one less than the
number of clauses in the pattern. Where a restriction is

placed depends on the required information. If all the in-
formation is found in the clause being processed, then the

restrict is placed before a join. If the clause needs infor-
marion from other clauses in the pattern, then the restric-

tion is placed after the join.

In the example found in Figure 2, the rule has a pattern
that searches for two facts named val. When they are
found, the variable ?x is constrained to have a value

597



greaterthan10and variable ?y must not
have the same value as ?x. When a pair
of facts matches all these constraints, a

new fact named pair is asserted into
working memory using the fact variables
found in the pattern. The results of PPS
pattern compilation can be found in the
gray area of Figure 3.

The pattern compiler begins by
examining the fu'st PATTERN in Figure
2. The first field of this pattern, a
SINGLE with a name of val, describes the

fact's class. The pattern compiler uses
this fact class to create a new database (the
left hand most db in Figure 3).
Processing continues on this clause at the
?x. This variable is found to have an

expression constraining its value (found
under the COAMP). Since this constraint
only uses information found in the current
clause, it immediately creates a database #va] 2
restriction to evaluate the constraint (the
left hand most restrict in Figure 3). This
clause is now rmished and the processing
is begun on the next PATTERN. Like
the previous clause, this pattern expects a
fact class of val, so another database is

created. Since ?y has a constraint
dependent on another clause, the creation
of the restrict is delayed and the two databases are
combined with a join. Processing finishes with a restrict
being created to constrain ?y from having the value in ?x
(the remaining join and restrict in Figure 3).

2

This query, seen in Figure 3, is equivalent to the original
pattern. The execution of this form would be as follows.
The db in this expression creates new databases from the
original facts. The arguments to db are the name of the
fact class and the index number of this pattern. Parallel

patterns always start at two or greater since there is al-
ways at least one serial pattern in every rule (remember
that one is added if none exist). The result of the far
lower left db is passed into reslricL Its two arguments are
a database and an expression. This restrict limits the
database to facts having a value for field 2 of pattern 2
(or ?x) greater than I0. The result of this restrict is
passed to the join. Join's arguments are always two
databases. The second database entering this join is cre-
ated from the original facts. Once these databases are
joined the resulting database is passed to the top level re-
strict. This restriction forces the value for field 2 of pat-

tern 3 (or ?y) to be different from field 2 of pattern 2 (or
?x).

Once the database query is created, it is ready to be at-
tached to the rule body. The function set context, seen in
Figure 3, takes a database on its left and preperes it for
the rule body evaluation. Then the rule body, on the

#vul 3 3 2 2 2 2 2 3 2

l0

?

Figure 3. Database query merged with rule body

right, is executed. Only one more step is necessary to
fmish preparing the rule for execution. It will be exam-
ined next.

3.3 PPS Expression Compilation
The parallel expression compiler examines expressions to
find parallel computations. The standard functions found
in the original expression are replaced with parallel equiv-
alents. This module makes use of the data supplied by

deffac_elds to determine what to should be made parallel.
Overall, thismodule usesstandardcompiler techniques to
compile expressions. It keeps track of each source
datatype and can convert between different datatypes as ap-
propriate. The only twist is that the CM allows all
operands to have variable length and when parallel in-
slructions are emitted, they must include lengths. The fi-
nal results from the example problem can be see .in

Figure 4.

In this final expression tree, various functions have been
convened into CM versions. For example, the • found
in the first restrict has been converted into a cm_i_gt (or
CM Integer Greater Than). This function will be per-
formed on the CM and will be applied to all facts in the

database at once. The function cm_conv_si..pi converts
serial integers, 10 in this example, into parallel integers.
The 32 appended to various functions is the bit length of
the oparand. Finally, all references to fact variables is
convened into cm..get_var. This routine will use current
databases to acquire a value for computation. The CLIPS

598



expressionevaluatorhas to be extended to allow PPS to
evaluate parallel expression trees.

3.4 PPS Expression Evaluator
The expression evaluator is extended by adding new data
types and by creating new parallel functions. Two dam
types have been added to the standard CLIPS set. One
type is used for parallel databases and the other for parallel
variables. The parallel database is used by restrict, join
and set context to identify which database is being ma-

nipulated. The parallel variable type points to an address
inCM memory. All the parallelarithmeticand boolean

functions return this type.
PPS createsa separatesetof virtualprocessorsfor each

classof parallelfacts.Each fieldof a factisstoredin

separateparallelvariablesinsidethe virtualprocessors.

The systemalsocreatestwo auxiliaryvariables.The first
isan in-useflagwhich determinesactivefacts.The sec-

ond isa timestamp which holdsthe time thisfactwas
createdorlastmodified (seesection2.3).When factsen-

terparallelworking memory, a freevirtualprocessoris
selectedand itsdatafieldsarcinitialized.The in-useflag

issetand the timcstamp isinitializedtothatof thecur-
rentrule.When factsarc retracted,thein-usevariableis

cleared.

A PPS databasealso createsa setof virtualprocessors.

Each virtualprocessorcontainsa setof indexes,an in-use
flag,and a recent-factflag.Insteadofmanaging the fact

data directly in a database, indexes are used to point to the
processors containing the actual facts. When joins merge
two databases into a new one, each active processor of the
new database has one index for each source database. The

in-use flag is true in all processors that contain active
database information. The recent-flag is true for database
entriesthatcontainfactswhose timestampdesignatesthis
factasa recentfactand therefore requiringrule evaluation.

A separatefunctionisused toevaluateeach parallelin-
struction.Each arithmeticand booleanfunctionacquires

itsopcrandsand invokesthe appropriateCM instruction

toperform itsfunction.For example, thecm_i_gt func-
tion in PPS acquires its operands and calls the

CM_s_gt_IL insu'uctionon theConnection Machine.

The databaseinsn'uctionsmanipulate the database data

structures.The db functioncreatesanew database.Itex-

amines thedatabase'ssourcefactsand initializesa setof

virtual processors with the appropriate information. The

era get_vat function uses the information in the CM
databasedescription and returns the value from this field
in the facL The restrict and join commands directly ma-

nipulate the database data structures. Restrict modifies
the in-use flag and join creates a new database whose in-
dexes point to the source facts of the original databases.

This section has outlined the major modification made to
CLIPS in the process of creating PPS. These modifica-

set context

#val

cm_get_var cm..get._var 32 #pair can_get_var cm_get_var

A A A
3 3 2 2 2 2 2 3 2

#val 2 cm..get_var 32

A A
2 2 I0 32

Figure4. The final parallel expression

599



dons have focused on convening parallel patterns into
database queries and giving the expression evaluator the
ability to evaluate expressions on the CM.

4 Performance results

This section will describe the procedure used to test the
performance of PPS. Two different tests will be used to
compare the PPS results to those of CLIPS.

Both CLIPS and PPS were run on the same Sun-4. In

addition to the Sun-4, a CM-2A with 8K processors was
used for the PPS benchmarks. Runtimes were measured

using the Stm-4 system clock (with feline) and they repre-
sent the wall clock runtime. We chose to perform the
benchmarks without disabling the normal background
processing performed by the Stm-4. This processing oc-
casionally caused small hiccups in the data.

A special command has been added to CLIPS and PPS to
perform a benchmark. This command performs a series
of runs differing only in the number of facts processed.
Runs begin by marking the start time and then entering
the correct number of facts into working memory. They
are of the form (x index) where index is from 1 to the
number of facts being tested. The production system is
started and allowed to run to completion. Finally, a stop
time is recorded and the total runtime presented to the
User.

The first benchmark examines the ability of a production
system to perform simple pattern matching with field
values being restricted. The rule used for the benchmark
was"

(defrule test-rule-I
(x ?i&:(evenp ?i))
E>

(assert (y ?i)))

This rule examines working memory for any fact of the
form (x ?i) where ?i is constrained to be an even value.
When such a fact is found, a new fact (3' ?i) is asserted
into the working memory. Given the initial facts (x 1) (x
2) (x 3) (x 4). this rule will assert (3, 2) and (y 4).

Figure 5 displays the results of PPS as the number of in-
put facts runs between 2048 and one million. The steps
seen in this graph are a result of the number of virtual
processors required to process the input facts. Since the
number of virtual processors is constrained to be a power
of two, steps form in the data each time the number of
facts forces the CM to go to the next higher size of vir-
tual processors. Once some virtualization level is
reached, the runtimes are independent of the number of
facts. Since each fact being matched is processed by a
separate virtual woes, and there are no interactions be-
tween facts (in this benchmark), then the runtime for one
fact is the same as that for many. This is very encourag-

ing. To process one million facts, the 8K processor CM-
2A took 4.55 seconds. If, however, a CM with 16K

processors were available, it would be processing one
million facts at the next lower step, or in 2.26 seconds.
If a 64K machine were available, the runtime for one mil-
lion facts would be .57 seconds.

The benchmark run forCLIPS was between 128 and 8192

inputfacts.As thenumber of factsincrease,CLIPS total
runtimeincreasesmostly linearly.Figure6 shows there-

sultsof CLIPS againstthoseof PPS (originallyseen in

Figure 5). Compared to the PPS, CLIPS increasesits
runtime very rapidly.

The second benchmark examines how well a production

system can perform matches that require more than one
fact. The benchmark used the following rule:

(defrule test-rule-2

(x?i)(x?j)

(assert(y?i?j)))

This rulewillcreatea 0' ?i?j)with allcombinationsof
indexesfound inthe(x?)facts.Given theinitialfacts(x

I)(x 2),thisrulewillassert(y 1 I)(y 1 2) (y2 I)(y 2

2). The number offactsassertedintotheworking mem-

ory isthesquareoftheinputfacts.

The resultfrom thisbenchmark can be seen inFigure7.

Both theresultsfrom PPS and CLIPS are displayedto-

gether. CLIPS was run between 8 and 160 facts and PPS
between 16 and 560 facts. At their maximum, CLIPS
will_ 25.6K facts(from 160 inputfacts)and PPS
willassert313.6K facts(from 560 inputfacts).The run-

timesof CLIPS nearlyform a parabolaand clearlyshow

that for CLIPS the work increases quadratically to the
number of input facts. The PPS results show a slow
growth in runtime as the number of facts increase.

A real application using PPS is currently under develop-
ment. When this application is finished it will be possi-
ble to get a better understanding of how PPS scales with
a mixture of rules. Since the two benchmarks tested rep-

resent the major operations performed in production sys-
tems, we are optimistic the results will be good.

$ Future work
Most of the restrictions discussed in Section 2.2 were

solely for the purpose of making the development of PPS
simpler. These restrictions were created primarily to
avoiddynamic memory allocation on the CM. With some
modification on how parallel fields are managed, variable

length facts and strings could be supported. The need to
specify field datatypes could also be eliminated.

Section 2.3 discuss_ the round robin scheduling of paral.
lel rules and mentions that better approaches are possible.

6OO



Runt/me
(secs)

Runtime

(secs)

Runtime

(secs)

7

6

5

4

3

2

1

14

12

I0

8

6

4

2

I-

!

,g

IOlileeoooooeno

oeoooeol

I I I I I

20OK 4OOK 6OOK 800K 1M

Figure5. PPS runtimesforthef'u'stbenchmark asthenumber

offactsprocessedgoes toone million.

_BJ_It_R
__ ! s ! I i I

50K 100K 150K 2OOK 250K 3OOK

Figure6. CLIPS versusPPS forthefurstbenchmark.

Graph has been rescaledfrom Figure5.

/
o

/

IOO 2OO 3OO 4OO

moo•

5OO

Figure 7. CLIPS versus PPS for the second benchmark.

601



One approach would be to modify the Rete algorithm
used in CLIPS. While it would not be wise to have the

Rote algorithm identify and record all partial matches in

parallel memory, specialized paraltcl tests could be added
to the Rete tree to determine if at least one parallel fact
matches each of the clauses found in a parallel rule pat-

tern. By knowing at least one fact matches each clause of
the rule pattern, it has a higher probability of performing
useful work when executed. This should increase the

overall efficiency of the system.

Another improvement would be to group multiple rule
queries together. Subqueries used by more that one paral-
lel rule would only have to be performed once and their
answers could be used by all. This is very much like the
discrimination network used in Rete which also performs

common pattern tests and shares results. It is even be
possible to merge this approach with the modification to
the Rete algorithm discussed above to seriously limit the
unnecessary database queries performed by PPS.

Before attempting any of these modifications, we wish to
gain a better understanding of the current performance of
PPS. In this way, we will be better able to understand
the impact made by changes.

References

[1] Forgy, C.L., Rete: A fast algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial

Intelligence 19, 1982, pp 17-37.

[2] Connection Machine Model CM-2 Technical

Summary, Version 5.1 May 1989, Thinking Machines
Corporation, Cambridge, Massachusetts.

[3] CLIPS Architecture Manual, COSMIC.

6 Summary and Conclusions
We have described a method, based on parallel database
queries and parallel rule evaluations, that allow produc-
tion systems to process large numbers of facts. Using
this technique, CLIPS was modified to create PPS. This
new system has a high degree of compatibility with its
parent while allowing the user to build applications im-
possible to process on CLIPS.

Data has been presented demonstrating PPS's ability to
perform well in Iact rich situations. Particularly encourag-
ing is how well PPS scales as the number of facts in.
crease. Many runtimes are a function of the vimmlization
level of the CM and are independent of the number of
facts being processed. In these situations, the runtime
can be controlled by the number of physical ptveessors
supplied (which controls how many virtual processors
will be emulated on each physical processor).

We are now applying PPS to a low-to-mid level image
understanding problem. Since this task generates hun-
dreds of thousands of facts, we believe that PPS is well

matched to the problem. Based on the results of this pro-
jeer, we hope to apply PPS to other areas of interest.
Some of these interest areas are simulation and modeling,
package/vehicle scheduling, and intelligent databases.

602


